Qwen Image Layered を ComfyUI で動かす
カテゴリ:deeplearning
Qwen Image Layered は画像1枚とプロンプトを入力すると、複数枚の透過画像を出力するモデルだ。
学習画像は主にポスターで、文字・画像・背景・小物を分離するのが得意だ。Live2D 用に人体のパーツを分解することはできない。
Qwen Image Edit 2509 を ComfyUI で実行する+プロンプトリスト
カテゴリ:deeplearning
目次
T2I 拡散モデルの設計メモ
カテゴリ:deeplearning
目次
- 概要
- クラウド GPU
- テキストエンコーダー
- VAE
- GAN
- コンディショニング
- 位置埋め込み
- 目的関数
- Transformer アーキテクチャ
- Transformer を使わないアーキテクチャ
- Gated MLP
- ブロック図
- データセット
- キャプショニング
- 学習方法
- Classifier Free Guidance
- Adaptive Projected Guidance
- Reinforcement Learning Guidance
- タイムステップスケジューラー
- ノイズスケジューラー
- 蒸留
- 画像編集
- 省メモリ学習
- 性能検証
- 高速化
- ワーキングメモリー
- 教師ありファインチューニング
- 強化学習
よく検索されているプロンプト(R18)
カテゴリ:deeplearning
LoRA の学習方法
カテゴリ:deeplearning
- 概要
- kohya-ss インストール時の注意点
- LoRA の種類
- PC スペック
- kohya 版 LoRA を使う
- 学習時に間違いやすいポイント
- 画像加工
- トリミング
- 背景除去
- 白背景
- 物体検出
- Aspect Ratio Bucketing
- キャプション・設定ファイル
- キャプション方式
- タグ編集アプリ
- キャプションファイルの先頭にタグを追記するコマンド
- 設定ファイルの class_tokens
- トリガーワード
- 画風学習のキャプションファイル
- キャラ学習のキャプションファイル
- keep_tokens
- VRAM 削減
- fp8_base
- mixed_precision
- xformers
- gradient_checkpointing gradient_accumulation_steps
- データの水増し
- 過学習防止
- 学習
- fp16 と bf16
- サンプルの出力
- 学習方式の選択
- リピート数とエポック数
- network_dim
- dim_from_weights network_weights
- network_alpha base_weights base_weights_multiplier
- min_snr_gamma
- debiased_estimation
- zero_terminal_snr
- v_parameterization
- noise_offset
- 学習率
- スケジューラ
- オプティマイザ
- 階層別学習率
- 高速化
- 省メモリ設定
- logging_dir
- SDXL
- 検証
- 学習の再開
- メタデータの閲覧
Z Image Turbo を ComfyUI で実行する+プロンプトガイド
カテゴリ:deeplearning
Z Image Turbo はベースモデルではなく蒸留モデル(DMD)であることに注意。
軽量モデルの中ではダントツの基本性能を持っており、SDXL 以降のモデルをファインチューンして使うなら Z Image のベースモデル一択だろう。
Automatic1111 互換の forge-neo でも実行できる。
Qwen Image Edit や FLUX.2 は編集も生成もできるが、Z Image はそうではない。
- Z Image base:ファインチューニングはされているが、強化学習・RLHF はされていない。LoRA 作成用モデル
- Z Image Turbo:ファインチューニング・蒸留・強化学習・RLHF が適用されたフルスペック版。Z Image は蒸留と強化学習とを同時に行う DMDR を採用している
- Z Image Edit:共通事前学習・Edit 用事前学習・Edit 用ファインチューニングが施されたバージョン。蒸留はされていないのである程度のステップ数が必要。論文によると CFG ありで 100 ステップ
base が公開されれば、「Turbo - base」を LoRA 化することで蒸留 LoRA を作成可能。base に自作 LoRA と蒸留 LoRA を適用すれば、自作 LoRA でも高速高画質な生成が可能。
目次
特徴
Advantage Weighted Matching のアルゴリズム
カテゴリ:deeplearning
AI の手がうまく描けない問題はどのように解決されたか
カテゴリ:deeplearning
YOLO v8 のファインチューニング
カテゴリ:deeplearning
AUTOMATIC1111 の Dreambooth の使い方
カテゴリ:deeplearning
LoRA はLoRA の学習方法に移動した。