Z Image Turbo を ComfyUI で実行する
カテゴリ:deeplearning
Z Image Turbo はベースモデルではなく蒸留モデル(DMD)であることに注意。
軽量モデルの中ではダントツの基本性能を持っており、SDXL 以降のモデルをファインチューンして使うなら Z Image の Turbo ではないベースモデル一択だろう。
Automatic1111 互換の forge-neo でも実行できる。
Qwen Image Edit や FLUX.2 は編集も生成もできるが、Z Image はそうではない。
- Z Image ベース:ファインチューニングはされているが、強化学習はされていない。LoRA 作成用モデル
- Z Image Turbo:ファインチューニング・蒸留・強化学習が適用されたフルスペック版
- Z Image Edit:共通事前学習・Edit 用事前学習・Edit 用ファインチューニングが施されたバージョン。蒸留はされていないのである程度のステップ数が必要
目次
特徴
res_multistep サンプラーの特徴
カテゴリ:deeplearning
ComfyUI で使える高速化・VRAM 技術
カテゴリ:deeplearning
ComfyUI は PyTorch attention = FlashAttention がデフォルトで使われる。昔は xformers(中身は FlashAttention)も使われていたが、最近では PyTorch attention を使うことが多い。
ComfyUI のオプションは comfy/cli_args.py を見るのが早い。
目次
T2I 拡散モデルの設計メモ
カテゴリ:deeplearning
目次
- 概要
- クラウド GPU
- テキストエンコーダー
- VAE
- GAN
- コンディショニング
- 位置埋め込み
- 目的関数
- Transformer アーキテクチャ
- Transformer を使わないアーキテクチャ
- Gated MLP
- ブロック図
- データセット
- キャプショニング
- 学習方法
- Classifier Free Guidance
- Adaptive Projected Guidance
- Reinforcement Learning Guidance
- タイムステップスケジューラー
- ノイズスケジューラー
- 蒸留
- 画像編集
- 省メモリ学習
- 性能検証
- 高速化
- ワーキングメモリー
- 教師ありファインチューニング
- 強化学習
LoRA の学習方法
カテゴリ:deeplearning
- 画像加工
- トリミング
- 背景除去
- 白背景
- 物体検出
- Aspect Ratio Bucketing
- キャプション・設定ファイル
- キャプション方式
- タグ編集アプリ
- キャプションファイルの先頭にタグを追記するコマンド
- 設定ファイルの class_tokens
- トリガーワード
- 画風学習のキャプションファイル
- キャラ学習のキャプションファイル
- keep_tokens
- VRAM 削減
- fp8_base
- mixed_precision
- xformers
- gradient_checkpointing gradient_accumulation_steps
- データの水増し
- 過学習防止
- 学習
- fp16 と bf16
- サンプルの出力
- 学習方式の選択
- リピート数とエポック数
- network_dim
- dim_from_weights network_weights
- network_alpha base_weights base_weights_multiplier
- min_snr_gamma
- debiased_estimation
- zero_terminal_snr
- v_parameterization
- noise_offset
- 学習率
- スケジューラ
- オプティマイザ
- 階層別学習率
- 高速化
- 省メモリ設定
- logging_dir
- SDXL
- 検証
- 学習の再開
- メタデータの閲覧
Qwen Image Edit 2509 を ComfyUI で実行する+プロンプトリスト
カテゴリ:deeplearning
目次
Diffusion-DPO(Diffusion-Direct Preference Optimization)の学習方法
カテゴリ:deeplearning
Diffusion-DPO Diffusion Model Alignment Using Direct Preference Optimization は SD3 でも使われた強化学習手法。SD3 ではランク 128 の LoRA として作成している。
ただし、画風や新しい概念の学習のような一般的なタスクは SFT(教師ありファインチューニング)が適している。「○○がうまく描けない」というニーズは○○が言語化できているので SFT を使うべき。SFT はデータセットを用意しやすいし学習負荷も低い。
Diffusion-DPO を使うケース
- 言語化が困難だが描いてほしくないもの(暴力的・性的表現)がある
- ユーザーの選好データを持っている
- 細部の表現の崩れを改善したい
SFT(教師ありファインチューニング)と Diffusion-DPO との違い
よく検索されているプロンプト(R18)
カテゴリ:deeplearning
ComfyUI の CFGNorm・Adaptive Projected Guidanceノードとは何か
カテゴリ:deeplearning
Waifu Diffusion で効率的に画像を生成する
カテゴリ:deeplearning
プロンプトリストはプロンプトやよく検索されているプロンプト(R18)、danbooru タグ検索を参照。
目次
- ワークフロー
- ツールの選択
- Stable Diffusion のモデルリンク
- Stable Diffusion の解説
- Tips
- 上手く描けない場合(胴が長いなど)はアスペクト比を変えてみる
- クオリティタグを使う
- CFG Scale を上げる
- 解像度を上げると頭や体が複数融合する
- Denoising Strength を下げると画質が落ちる
- 細部の修正
- 手の修正
- 手の自由度
- 高解像度化
- 色のコントロール
- 顔に影ができる
- ファインチューニング