LoRA の学習方法
カテゴリ:deeplearning
- 概要
- kohya-ss インストール時の注意点
- LoRA の種類
- PC スペック
- kohya 版 LoRA を使う
- 学習時に間違いやすいポイント
- 画像加工
- トリミング
- 背景除去
- 白背景
- 物体検出
- Aspect Ratio Bucketing
- キャプション・設定ファイル
- キャプション方式
- タグ編集アプリ
- キャプションファイルの先頭にタグを追記するコマンド
- 設定ファイルの class_tokens
- トリガーワード
- 画風学習のキャプションファイル
- キャラ学習のキャプションファイル
- keep_tokens
- VRAM 削減
- fp8_base
- mixed_precision
- xformers
- gradient_checkpointing gradient_accumulation_steps
- データの水増し
- 過学習防止
- 学習
- fp16 と bf16
- サンプルの出力
- 学習方式の選択
- リピート数とエポック数
- network_dim
- dim_from_weights network_weights
- network_alpha base_weights base_weights_multiplier
- min_snr_gamma
- debiased_estimation
- zero_terminal_snr
- v_parameterization
- noise_offset
- 学習率
- スケジューラ
- オプティマイザ
- 階層別学習率
- 高速化
- 省メモリ設定
- logging_dir
- SDXL
- 検証
- 学習の再開
- メタデータの閲覧
Z Image Turbo を ComfyUI で実行する+プロンプトガイド
カテゴリ:deeplearning
Z Image Turbo はベースモデルではなく蒸留モデル(DMD)であることに注意。
軽量モデルの中ではダントツの基本性能を持っており、SDXL 以降のモデルをファインチューンして使うなら Z Image のベースモデル一択だろう。
Automatic1111 互換の forge-neo でも実行できる。
Qwen Image Edit や FLUX.2 は編集も生成もできるが、Z Image はそうではない。
- Z Image base:ファインチューニングはされているが、強化学習・RLHF はされていない。LoRA 作成用モデル
- Z Image Turbo:ファインチューニング・蒸留・強化学習・RLHF が適用されたフルスペック版。Z Image は蒸留と強化学習とを同時に行う DMDR を採用している
- Z Image Edit:共通事前学習・Edit 用事前学習・Edit 用ファインチューニングが施されたバージョン。蒸留はされていないのである程度のステップ数が必要。論文によると CFG ありで 100 ステップ
base が公開されれば、「Turbo - base」を LoRA 化することで蒸留 LoRA を作成可能。base に自作 LoRA と蒸留 LoRA を適用すれば、自作 LoRA でも高速高画質な生成が可能。
目次
特徴
T2I 拡散モデルの設計メモ
カテゴリ:deeplearning
目次
- 概要
- クラウド GPU
- テキストエンコーダー
- VAE
- GAN
- コンディショニング
- 位置埋め込み
- 目的関数
- Transformer アーキテクチャ
- Transformer を使わないアーキテクチャ
- Gated MLP
- ブロック図
- データセット
- キャプショニング
- 学習方法
- Classifier Free Guidance
- Adaptive Projected Guidance
- Reinforcement Learning Guidance
- タイムステップスケジューラー
- ノイズスケジューラー
- 蒸留
- 画像編集
- 省メモリ学習
- 性能検証
- 高速化
- ワーキングメモリー
- 教師ありファインチューニング
- 強化学習
Advantage Weighted Matching のアルゴリズム
カテゴリ:deeplearning
AI の手がうまく描けない問題はどのように解決されたか
カテゴリ:deeplearning
YOLO v8 のファインチューニング
カテゴリ:deeplearning
AUTOMATIC1111 の Dreambooth の使い方
カテゴリ:deeplearning
LoRA はLoRA の学習方法に移動した。
目次
- 概要
- 正則化画像の必要性
- Parameters
- Advanced
- Concepts
- A Few Dreambooth Observations and Tips, Leafier Closer Shots With the New Vae File (higher CFG)
- モデルの圧縮(脱水)
画像生成 AI の限界
カテゴリ:deeplearning
画像生成の出力は以下の限界がある。
- 学習データセット
- テキストエンコーダー・モデルの表現力
- 汎化能力が思ったほど高くない
- オペレータの語彙と想像力
言語の限界が現在の画像・動画生成の限界で、手書きの場合は言語化不可能な概念を画像で表現できる。言い換えると、Danbooru 語で訓練された AI は Danbooru タグを追加できないが、手書きなら Danbooru タグにない絵を描いて新しい Danbooru タグを追加できる。
1. データセットと汎化能力
Qwen Image Edit 2509 を ComfyUI で実行する+プロンプトリスト
カテゴリ:deeplearning
目次
Waifu Diffusion で効率的に画像を生成する
カテゴリ:deeplearning
プロンプトリストはプロンプトやよく検索されているプロンプト(R18)、danbooru タグ検索を参照。
目次
- ワークフロー
- ツールの選択
- Stable Diffusion のモデルリンク
- Stable Diffusion の解説
- Tips
- 上手く描けない場合(胴が長いなど)はアスペクト比を変えてみる
- クオリティタグを使う
- CFG Scale を上げる
- 解像度を上げると頭や体が複数融合する
- Denoising Strength を下げると画質が落ちる
- 細部の修正
- 手の修正
- 手の自由度
- 高解像度化
- 色のコントロール
- 顔に影ができる
- ファインチューニング